Hydropower station scheduling with ship arrival prediction and energy storage

Author:

Zhou Enjiang,Liu Xiao,Meng Zhihang,Yu Song,Mei Jinxiu,Qu Qiang

Abstract

AbstractEffectiveness improvement in power generation and navigation for grid-connected hydropower stations have emerged as a significant concern due to the challenges such as discrepancies between declared and actual ship arrival times, as well as unstable power generation. To address these issues, this paper proposes a multi-objective real-time scheduling model. The proposed model incorporates energy storage and ship arrival prediction. An energy storage mechanism is introduced to stabilize power generation by charging the power storage equipment during surplus generation and discharging it during periods of insufficient generation at the hydropower stations. To facilitate the scheduling with the eneragy storage mechanism, the arrival time of ships to the stations are predicted. We use the maximization of generation minus grid load demand and the maximization of navigability assurance rate as two objective functions in the scheduling process. The model uses the Non-Dominated Sorting Beluga Whale Optimization (NSBWO) algorithm to optimize and solve the real-time discharge flow scheduling of the hydropower stations in different time periods. The NSBWO algorithm combines the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Beluga Whale Optimization (BWO). The experimental results show that the proposed method has advantages in predicting the expected arrival time of ships and scheduling the discharge flow. The prediction using XGBoost model reaches accuracy with more than 0.9, and the discharged flow obtained from scheduling meets the demand of hydropower stations grid load while also improves the navigation benefits. This study provides theoretical analysis with its practical applications in a real hyropower station as a case study for solving hydropower scheduling problems.

Funder

Science and Technology Project of the Department of Transportation Science and Technology of Guizhou Province

Shenzhen Basic Research Special Basic Research Key Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3