Calibration of spectra in presence of non-stationary background using unsupervised physics-informed deep learning

Author:

Puleio Alessandro,Rossi Riccardo,Gaudio Pasqualino

Abstract

AbstractCalibration is a key part of the development of a diagnostic. Standard approaches require the setting up of dedicated experiments under controlled conditions in order to find the calibration function that allows one to evaluate the desired information from the raw measurements. Sometimes, such controlled experiments are not possible to perform, and alternative approaches are required. Most of them aim at extracting information by looking at the theoretical expectations, requiring a lot of dedicated work and usually involving that the outputs are extremely dependent on some external factors, such as the scientist experience. This work presents a possible methodology to calibrate data or, more generally, to extract the information from the raw measurements by using a new unsupervised physics-informed deep learning methodology. The algorithm allows to automatically process the data and evaluate the searched information without the need for a supervised training by looking at the theoretical expectations. The method is examined in synthetic cases with increasing difficulties to test its potentialities, and it has been found that such an approach can also be used in very complex behaviours, where human-drive results may have huge uncertainties. Moreover, also an experimental test has been performed to validate its capabilities, but also highlight the limits of this method, which, of course, requires particular attention and a good knowledge of the analysed phenomena. The results are extremely interesting, and this methodology is believed to be applied to several cases where classic calibration and supervised approaches are not accessible.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3