Author:
Zenchyzen Brandi,Acorn John H.,Merkosky Kian,Hall Jocelyn C.
Abstract
AbstractNature is aglow with numerous captivating examples of UV-fluorescence in the animal kingdom. Despite a putative role as a visual signal, exploration of UV-fluorescence in plants and its role in plant-animal interactions is lagging in comparison. Almost 50 years ago, UV-fluorescence of floral nectar, a crucial reward for pollinators, was reported for 23 flowering plant species. Since this intriguing discovery, UV-fluorescent nectar has only seldom been addressed in the scientific literature and has not been scrutinized in a phylogenetic or ecological context. Here, we report the prevalence of vibrant UV-fluorescent floral nectar across the family Cleomaceae, including the first photographic documentation in vivo colour for flowering plants. Though Cleomaceae flowers are morphologically diverse varying in colour, nectary prominence, and nectar volume, UV-fluorescent floral nectar may be a ubiquitous characteristic of the family. Fluorescence spectra show that the identity and number of fluorescent compounds in floral nectar may differ among Cleomaceae species. As Cleomaceae pollinators range from insects to bats and birds, we suggest that the UV-fluorescent floral nectar not only functions as a visual cue for the diurnal pollinators but also for the nocturnal/crepuscular pollinators in low light settings.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
2. Giurfa, M., Núñez, J., Chittka, L. & Menzel, R. Colour preferences of flower-naive honeybees. J. Comp. Physiol. A 177, 247–259 (1995).
3. Riffell, J. A., Lei, H., Abrell, L. & Hildebrand, J. G. Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339, 200–204 (2013).
4. Kevan, P. G., Chittka, L. & Dyer, A. G. Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J. Exp. Biol. 204, 2571–2580 (2001).
5. Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol.: Educ. Outreach 1, 476–486 (2008).