Author:
Schmidt Ryder M.,Delgadillo Rodrigo,Ford John C.,Padgett Kyle R.,Studenski Matthew,Abramowitz Matthew C.,Spieler Benjamin,Xu Yihang,Yang Fei,Dogan Nesrin
Abstract
AbstractThis study provides a quantitative assessment of the accuracy of a commercially available deformable image registration (DIR) algorithm to automatically generate prostate contours and additionally investigates the robustness of radiomic features to differing contours. Twenty-eight prostate cancer patients enrolled on an institutional review board (IRB) approved protocol were selected. Planning CTs (pCTs) were deformably registered to daily cone-beam CTs (CBCTs) to generate prostate contours (auto contours). The prostate contours were also manually drawn by a physician. Quantitative assessment of deformed versus manually drawn prostate contours on daily CBCT images was performed using Dice similarity coefficient (DSC), mean distance-to-agreement (MDA), difference in center-of-mass position (ΔCM) and difference in volume (ΔVol). Radiomic features from 6 classes were extracted from each contour. Lin’s concordance correlation coefficient (CCC) and mean absolute percent difference in radiomic feature-derived data (mean |%Δ|RF) between auto and manual contours were calculated. The mean (± SD) DSC, MDA, ΔCM and ΔVol between the auto and manual prostate contours were 0.90 ± 0.04, 1.81 ± 0.47 mm, 2.17 ± 1.26 mm and 5.1 ± 4.1% respectively. Of the 1,010 fractions under consideration, 94.8% of DIRs were within TG-132 recommended tolerance. 30 radiomic features had a CCC > 0.90 and 21 had a mean |%∆|RF < 5%. Auto-propagation of prostate contours resulted in nearly 95% of DIRs within tolerance recommendations of TG-132, leading to the majority of features being regarded as acceptably robust. The use of auto contours for radiomic feature analysis is promising but must be done with caution.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献