Oligocene moisture variations as evidenced by an aeolian dust sequence in Inner Mongolia, China

Author:

Wasiljeff Joonas,Salminen Johanna M.,Stenman Jarkko,Zhang Zhaoqun,Kaakinen Anu

Abstract

AbstractThe aridification of Central Asia since the Eocene has widespread evidence, but climate-controlled environmental reorganizations during the Oligocene remain ambiguous. We employed environmental magnetic, mineralogical and geochemical methods on a latest Eocene to late Oligocene terrestrial sequence in Inner Mongolia, China, to examine how global climatic trends and regional factors influenced the evolution of moisture and weathering in the region. Highlighting the climatic influence, our weathering and rainfall proxy data document the drawdown of atmospheric CO2 and global cooling during the early Oligocene semi-arid phase, which culminated in the Early Oligocene Aridification Event at 31 Ma. Moreover, for the first time in the terrestrial eastern Central Asian setting, we provide geochemical and geophysical evidence for a second major Oligocene aridification event nearly synchronous to the mid-Oligocene Glacial Maximum at around 28 Ma. These aridification events were interrupted by periods of increased rainfall and weathering and can be associated with the terminations of glacial events seen in marine oxygen isotope records.

Funder

GeoDoc, Doctoral School in Natural Sciences, University of Helsinki, Finland

Academy of Finland

Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3