Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea

Author:

Ma Eun-Yeol,Kim Jeong-Whun,Lee Youngmin,Cho Sung-Woo,Kim Heeyoung,Kim Jae Kyoung

Abstract

AbstractUnsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clusters and key phenotypic features have been subjectively selected, reducing the reliability of the phenotyping results. Here, to minimize such subjective decisions for highly confident phenotyping, we develop a multimetric phenotyping framework by combining supervised and unsupervised machine learning. This clusters 2277 OSA patients to six phenotypes based on their multidimensional polysomnography (PSG) data. Importantly, these new phenotypes show statistically different comorbidity development for OSA-related cardio-neuro-metabolic diseases, unlike the conventional single-metric apnea–hypopnea index-based phenotypes. Furthermore, the key features of highly comorbid phenotypes were identified through supervised learning rather than subjective choice. These results can also be used to automatically phenotype new patients and predict their comorbidity risks solely based on their PSG data. The phenotyping framework based on the combination of unsupervised and supervised machine learning methods can also be applied to other complex, heterogeneous diseases for phenotyping patients and identifying important features for high-risk phenotypes.

Funder

National Research Foundation of Korea

KAIST End Run Project

Seoul National University Bundang Hospital

Human Frontiers Science Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3