Cryogenic conditioning of microencapsulated phase change material for thermal energy storage

Author:

Trivedi G. V. N.,Parameshwaran R.

Abstract

AbstractMicroencapsulation is a viable technique to protect and retain the properties of phase change materials (PCMs) that are used in thermal energy storage (TES) applications. In this study, an organic ester as a phase change material was microencapsulated using melamine–formaldehyde as the shell material. This microencapsulated PCM (MPCM) was examined with cyclic cryogenic treatment and combined cyclic cryogenic heat treatment processes. The surface morphology studies showed that the shell surfaces had no distortions or roughness after cryogenic treatment. The cryogenically conditioned microcapsules exhibited diffraction peak intensity shifts and crystal structure changes. The onset of melting for the nonconditioned and conditioned microcapsules were measured to be 8.56–9.56 °C, respectively. Furthermore, after undergoing the cryogenic and heat treatment processes, the PCM microcapsules had appreciable latent heat capacities of 39.8 kJ/kg and 60.7 kJ/kg, respectively. Additionally, the microcapsules were found to have good chemical stability after the cryogenic treatment. In addition, the cryogenically conditioned microcapsules were found to be thermally stable up to 128.9 °C, whereas the nonconditioned microcapsules were stable up to 101.9 °C. Based on the test results, it is obvious that the cryogenically conditioned microcapsules exhibited good thermal properties and are very desirable for cool thermal energy storage applications.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3