Author:
Na Jae Yoon,Kim Dongkyun,Kwon Amy M.,Jeon Jin Yong,Kim Hyuck,Kim Chang-Ryul,Lee Hyun Ju,Lee Joohyun,Park Hyun-Kyung
Abstract
AbstractDespite the many comorbidities and high mortality rate in preterm infants with patent ductus arteriosus (PDA), therapeutic strategies vary depending on the clinical setting, and most studies of the related risk factors are based on small sample populations. We aimed to compare the performance of artificial intelligence (AI) analysis with that of conventional analysis to identify risk factors associated with symptomatic PDA (sPDA) in very low birth weight infants. This nationwide cohort study included 8369 very low birth weight (VLBW) infants. The participants were divided into an sPDA group and an asymptomatic PDA or spontaneously close PDA (nPDA) group. The sPDA group was further divided into treated and untreated subgroups. A total of 47 perinatal risk factors were collected and analyzed. Multiple logistic regression was used as a standard analytic tool, and five AI algorithms were used to identify the factors associated with sPDA. Combining a large database of risk factors from nationwide registries and AI techniques achieved higher accuracy and better performance of the PDA prediction tasks, and the ensemble methods showed the best performances.
Funder
Ministry of Science and ICT, South Korea
Korean Centers for Disease Control and Prevention
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献