Fast reconstruction algorithm based on HMC sampling

Author:

Lian Hang,Xu Jinchen,Zhu Yu,Fan Zhiqiang,Liu Yi,Shan Zheng

Abstract

AbstractIn Noisy Intermediate-Scale Quantum (NISQ) era, the scarcity of qubit resources has prevented many quantum algorithms from being implemented on quantum devices. Circuit cutting technology has greatly alleviated this problem, which allows us to run larger quantum circuits on real quantum machines with currently limited qubit resources at the cost of additional classical overhead. However, the classical overhead of circuit cutting grows exponentially with the number of cuts and qubits, and the excessive postprocessing overhead makes it difficult to apply circuit cutting to large scale circuits. In this paper, we propose a fast reconstruction algorithm based on Hamiltonian Monte Carlo (HMC) sampling, which samples the high probability solutions by Hamiltonian dynamics from state space with dimension growing exponentially with qubit. Our algorithm avoids excessive computation when reconstructing the original circuit probability distribution, and greatly reduces the circuit cutting post-processing overhead. The improvement is crucial for expanding of circuit cutting to a larger scale on NISQ devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Shalf, J. M. & Leland, R. Computing beyond Moore’s law. Computer 48, 14–23 (2015).

2. Biamonte, J. et al. Quantum machine learning. Quantum 549, 195–202 (2017).

3. Lloyd, S., Mohseni, M. & Rebentrost, P. J. Quantum Algorithms for Supervised and Unsupervised Machine Learning (Springer, 2013).

4. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Quantum 2, 106–111 (2010).

5. Abrams, D. S. & Lloyd, S. J. Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586 (1997).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3