m6A regulator-mediated methylation modification patterns and tumor microenvironment immune infiltration with prognostic analysis in esophageal cancer

Author:

Sheng Gaohong,Wang Tianqi,Gao Yuan,Wu Hua,Wu Jianhong

Abstract

AbstractEsophageal cancer is a highly malignant disease with poor prognosis. Despite recent advances in the study of esophageal cancer, there has been only limited improvement in the treatment and prognosis. N6-methyladenosine (m6A), a type of RNA modification, has been extensively investigated and is involved in many biological behaviors, including tumorigenesis and progression. Thus, more research on m6A modification may increase our understanding of esophageal cancer pathogenesis and provide potential targets. In our study, we integrated the public data of esophageal cancer from The Cancer Genome Atlas (TCGA) and Gene-Expression Omnibus (GEO) databases. Unsupervised clustering analysis was used to classify patients into different groups. Gene set variation analysis (GSVA) was performed in a nonparametric and unsupervised mode. We evaluated immune cell infiltration by single sample gene set enrichment analysis (ssGSEA). Differentially expressed genes (DEGs) among m6A clusters were identified using Empirical Bayesian approach. Both multivariate and univariate Cox regression models were used for prognostic analysis. We provided an overview of gene variation and expression of 23 m6A regulators in esophageal cancer, as well as their effects on survival. Based on the overall expression level of m6A regulators, patients were classified into three m6A clusters (A-C) with different immune cell infiltration abundance, gene expression signatures and prognosis. Among m6A clusters, we identified 206 DEGs, according to which patients were classified into 4 gene clusters (A-D). Quantitative m6A score was calculated for each patient based on those DEGs with significant impact on survival. The infiltration of all types of immune cells except type 2 T helper (Th2) cells were negatively correlated with m6A score. M6Acluster C exhibited the lowest m6A score, the most abundant immune cell infiltration, and the worst prognosis, suggesting an immune excluded phenotype. Consistently, gene cluster D with the lowest m6A score showed the worst prognosis. In short, patients with esophageal cancer showed different m6A modification patterns. Quantitative scoring indicated that patients with the lowest m6A score exhibited the most abundant immune cell infiltration and the poorest prognosis. This m6A scoring system is promising to assess m6A modification pattern, characterize immune infiltration and guide personalized treatment and prognostic prediction.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3