Detecting network anomalies using Forman–Ricci curvature and a case study for human brain networks

Author:

Chatterjee Tanima,Albert Réka,Thapliyal Stuti,Azarhooshang Nazanin,DasGupta Bhaskar

Abstract

AbstractWe analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention Deficit Hyperactivity Disorder (adhd). We express the task for finding changes as a network anomaly detection problem on temporal networks. We propose the use of a curvature measure based on the Forman–Ricci curvature, which expresses higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman–Ricci curvature with another well-known notion of network curvature, namely the Ollivier–Ricci curvature, lends further justification to the assertions that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature differs dramatically in brains of adhd patients compared to healthy brains. The importance of these edges is supported by existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional approaches, for example analysis of edge weights, would not be able to identify.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3