Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media

Author:

Hashemi Leila,Blunt Martin,Hajibeygi Hadi

Abstract

AbstractUnderground hydrogen storage (UHS) in initially brine-saturated deep porous rocks is a promising large-scale energy storage technology, due to hydrogen’s high specific energy capacity and the high volumetric capacity of aquifers. Appropriate selection of a feasible and safe storage site vitally depends on understanding hydrogen transport characteristics in the subsurface. Unfortunately there exist no robust experimental analyses in the literature to properly characterise this complex process. As such, in this work, we present a systematic pore-scale modelling study to quantify the crucial reservoir-scale functions of relative permeability and capillary pressure and their dependencies on fluid and reservoir rock conditions. To conduct a conclusive study, in the absence of sufficient experimental data, a rigorous sensitivity analysis has been performed to quantify the impacts of uncertain fluid and rock properties on these upscaled functions. The parameters are varied around a base-case, which is obtained through matching to the existing experimental study. Moreover, cyclic hysteretic multiphase flow is also studied, which is a relevant aspect for cyclic hydrogen-brine energy storage projects. The present study applies pore-scale analysis to predict the flow of hydrogen in storage formations, and to quantify the sensitivity to the micro-scale characteristics of contact angle (i.e., wettability) and porous rock structure.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3