Pulse distortion caused by waveguide inhomogeneity in nonlinear optical wavelength converters

Author:

Paygan Danial,Izadi Mohammad Amin,Mousavi S. Faezeh,Nouroozi Rahman

Abstract

AbstractLow-noise integrated all-optical wavelength converters that can be operated in short pulse regime are essential tools to overcome contention resolution in a modern communication network, based on wavelength division multiplexing. Any imperfect functionality in such devices causes non-ideal optical power transfer to the converted data pulses. All imperfections during the preparation and operation of the wavelength converters can be addressed to the waveguide inhomogeneity which distorts data pulses to be converted. This paper reports different waveguide inhomogeneity effects on the pulse distortion while using periodically poled lithium niobate waveguide as wavelength converters. Three types of $$\chi ^{(2)}$$ χ ( 2 ) -based nonlinear optical processes, including second harmonic generation, difference frequency generation, and cascaded second harmonic generation/difference frequency generation are numerically studied to show that any constant, linear, and quadratic waveguide inhomogeneity causes short pulse (down to 1 ns) distortion in such wavelength converters. In addition, it is shown that the reconstruction of $$\textrm{sech}^2$$ sech 2 -shaped generated pulses is possible, when suitable upside-down quadratic variations of obtained inhomogeneity are deliberately induced in the waveguide. Notably, for pulsed second harmonic generation, the generated pulse can be compressed using an upside-down quadratic phase mismatch.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3