Remote sensing image dehazing using generative adversarial network with texture and color space enhancement

Author:

Shen Helin,Zhong Tie,Jia Yanfei,Wu Chunming

Abstract

AbstractRemote sensing is gradually playing an important role in the detection of ground information. However, the quality of remote-sensing images has always suffered from unexpected natural conditions, such as intense haze phenomenon. Recently, convolutional neural networks (CNNs) have been applied to deal with dehazing problems, and some important findings have been obtained. Unfortunately, the performance of these classical CNN-based methods still needs further enhancement owing to their limited feature extraction capability. As a critical branch of CNNs, the generative adversarial network (GAN), composed of a generator and discriminator, has become a hot research topic and is considered a feasible approach to solving the dehazing problems. In this study, a novel dehazed generative adversarial network (GAN) is proposed to reconstruct the clean images from the hazy ones. For the generator network of the proposed GAN, the color and luminance feature extraction module and the high-frequency feature extraction module aim to extract multi-scale features and color space characteristics, which help the network to acquire texture, color, and luminance information. Meanwhile, a color loss function based on hue saturation value (HSV) is also proposed to enhance the performance in color recovery. For the discriminator network, a parallel structure is designed to enhance the extraction of texture and background information. Synthetic and real hazy images are used to check the performance of the proposed method. The experimental results demonstrate that the performance can significantly improve the image quality with a significant increment in peak-signal-to-noise ratio (PSNR). Compared with other popular methods, the dehazing results of the proposed method closely resemble haze-free images.

Funder

Natural Science Foundation of Jilin Province under Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3