Elastic interaction between Mauna Loa and Kīlauea evidenced by independent component analysis

Author:

Przeor Monika,D’Auria Luca,Pepe Susi,Tizzani Pietro,Cabrera-Pérez Iván

Abstract

AbstractThe contrasting dynamics between Mauna Loa and Kīlauea have been studied over the last 100 years from multiple viewpoints. The fact that dynamic changes of one volcano trigger a dynamic response of the other volcano indicates a connection may exist. Petrological works show a direct relationship between the magmatic systems of these two volcanoes is not possible. We analysed DInSAR data and GPS measurements of ground deformation patterns associated with the activity of Mauna Loa and Kīlauea volcanoes. The DInSAR SBAS dataset spans the interval between 2003 and 2010, and was acquired along ascending and descending orbits of the ENVISAT (ESA) satellite under different look angles. Of the 10 tracks that cover the Big Island (Hawai‘i), 4 cover both volcanic edifices. Using GPS measurements, we computed the areal strain on 15 triplets of stations for Kīlauea volcano and 11 for Mauna Loa volcano. DInSAR data was analysed by applying Independent Component Analysis (ICA) to decompose the time-varying ground deformation pattern of both volcanoes. The results revealed anticorrelated ground deformation behaviour of the main calderas of Mauna Loa and Kīlauea, meaning that the opposite response is seen in the ground deformation of one volcano with respect to the other. At the same time, Kīlauea exhibits a more complex pattern, with an additional component, which appears not to be correlated with the dynamics of Mauna Loa. The GPS areal strain time series support these findings. To corroborate and help interpret the results, we performed inverse modelling of the observed ground deformation pattern using analytical source models. The results indicate that the ground deformation of Mauna Loa is associated with a dike-shaped source located at 6.2 km depth. In comparison, the anticorrelated ground deformation of Kīlauea is associated with a volumetric source at 1.2 km depth. This excludes a hydraulic connection as a possible mechanism to explain the anticorrelated behaviour; instead, we postulate a stress-transfer mechanism. To support this hypothesis, we performed a 3D numerical modelling of stress and strain fields in the study area, determining the elastic interaction of each source over the others. The most relevant finding is that the Mauna Loa shallow plumbing system can affect the shallowest magmatic reservoir of Kīlauea, while the opposite scenario is unlikely. Conversely, the second independent component observed at Kīlauea is associated to a sill-shaped source located at a depth of 3.5 km, which is less affected by this interaction process.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Comon, P. Independent component analysis, a new concept?. Signal Process. 36, 287–314 (1994).

2. Venzke, E. Global volcanism program. Volcanoes of the World, 4(1), 1280 (2013).

3. Poland, M. P., Miklius, A. & Montgomery-Brown, E. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. Charact. Hawaii. Volcanoes 179, 179–234 (2015).

4. Walter, T. R. & Amelung, F. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii. J. Geophys. Res. Solid Earth 111(B5) (2006).

5. Pepe, S. et al. The use of massive deformation datasets for the analysis of spatial and temporal evolution of Mauna Loa volcano (hawai’i). Remote Sens. 10, 968 (2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3