Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks

Author:

Hallac Rami R.,Lee JeonORCID,Pressler Mark,Seaward James R.,Kane Alex A.ORCID

Abstract

AbstractQuantifying ear deformity using linear measurements and mathematical modeling is difficult due to the ear’s complex shape. Machine learning techniques, such as convolutional neural networks (CNNs), are well-suited for this role. CNNs are deep learning methods capable of finding complex patterns from medical images, automatically building solution models capable of machine diagnosis. In this study, we applied CNN to automatically identify ear deformity from 2D photographs. Institutional review board (IRB) approval was obtained for this retrospective study to train and test the CNNs. Photographs of patients with and without ear deformity were obtained as standard of care in our photography studio. Profile photographs were obtained for one or both ears. A total of 671 profile pictures were used in this study including: 457 photographs of patients with ear deformity and 214 photographs of patients with normal ears. Photographs were cropped to the ear boundary and randomly divided into training (60%), validation (20%), and testing (20%) datasets. We modified the softmax classifier in the last layer in GoogLeNet, a deep CNN, to generate an ear deformity detection model in Matlab. All images were deemed of high quality and usable for training and testing. It took about 2 hours to train the system and the training accuracy reached almost 100%. The test accuracy was about 94.1%. We demonstrate that deep learning has a great potential in identifying ear deformity. These machine learning techniques hold the promise in being used in the future to evaluate treatment outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A publicly available newborn ear shape dataset for medical diagnosis of auricular deformities;Scientific Data;2024-01-02

2. Detection of Different Types of Ear Diseases in Infants Using Deep Learning for Early Treatment;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

3. Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT;Japanese Journal of Radiology;2023-10-09

4. A Retrospective Review of Outcomes and Complications after Infant Ear Molding at a Single Institution;Plastic and Reconstructive Surgery - Global Open;2023-08

5. The Use of Eye-tracking Technology in Cleft Lip: A Literature Review;Plastic and Reconstructive Surgery - Global Open;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3