Hydrogen generation of single alloy Pd/Pt quantum dots over Co3O4 nanoparticles via the hydrolysis of sodium borohydride at room temperature

Author:

Farrag Mostafa,Ali Gomaa A. M.

Abstract

AbstractTo satisfy global energy demands and decrease the level of atmospheric greenhouse gases, alternative clean energy sources are required. Hydrogen is one of the most promising clean energy sources due to its high chemical energy density and near-zero greenhouse gas emissions. A single alloyed phase of Pd/Pt nanoclusters as quantum dots (QDs) was prepared and loaded over Co3O4 nanoparticles with a low loading percentage (1 wt.%) for hydrogen generation from the hydrolysis of NaBH4 at room temperature. L-glutathione (SG) was used as a capping ligand. It was found that the single alloy catalyst (Pd0.5–Pt0.5)n(SG)m/Co3O4 caused a significant enhancement in hydrogen generation in comparison to the monometallic clusters (Pdn(SG)m and Ptn(SG)m). Moreover, the Pd/Pt alloy showed a positive synergistic effect compared to the physical mixture of Pd and Pt clusters (1:1) over Co3O4. The QDs alloy and monometallic Pd and Pt clusters exhibited well-dispersed particle size in ~ 1 nm. The (Pd0.5–Pt0.5)n(SG)m)/Co3O4 catalyst offers a high hydrogen generation rate (HGR) of 8333 mL min− 1 g− 1 at room temperature. The synergistic effect of Pd and Pt atoms in the nanoclusters alloy is the key point beyond this high activity, plus the prepared clusters' unique atomic packing structure and electronic properties. The effect of the NaBH4 concentration, catalyst amount, and reaction temperature (25–60 °C) were investigated, where HGR reaches 50 L min− 1 g− 1 at 60 °C under the same reaction conditions. The prepared catalysts were analyzed by UV–Vis, TGA, HR-TEM, XRD, and N2 adsorption/desorption techniques. The charge state of the Pd and Pt in monometallic and alloy nanoclusters is zero, as confirmed by X-ray photoelectron spectroscopy analysis. The catalysts showed high recyclability efficiency for at least five cycles due to the high leaching resistance of the alloy nanoclusters within the Co3O4 host. The prepared catalysts are highly efficient for energy-based applications.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3