Mammographic image classification with deep fusion learning

Author:

Yu Xiangchun,Pang Wei,Xu Qing,Liang Miaomiao

Abstract

AbstractTo better address the recognition of abnormalities among mammographic images, in this study we apply the deep fusion learning approach based on Pre-trained models to discover the discriminative patterns between Normal and Tumor categories. We designed a deep fusion learning framework for mammographic image classification. This framework works in two main steps. After obtaining the regions of interest (ROIs) from original dataset, the first step is to train our proposed deep fusion models on those ROI patches which are randomly collected from all ROIs. We proposed the deep fusion model (Model1) to directly fuse the deep features to classify the Normal and Tumor ROI patches. To explore the association among channels of the same block, we propose another deep fusion model (Model2) to integrate the cross-channel deep features using 1 × 1 convolution. The second step is to obtain the final prediction by performing the majority voting on all patches' prediction of one ROI. The experimental results show that Model1 achieves the whole accuracy of 0.8906, recall rate of 0.913, and precision rate of 0.8077 for Tumor class. Accordingly, Model2 achieves the whole accuracy of 0.875, recall rate of 0.9565, and precision rate 0.7,586 for Tumor class. Finally, we open source our Python code at https://github.com/yxchspring/MIAS in order to share our tool with the research community.

Funder

Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3