Mathematical simulation of tumour angiogenesis: angiopoietin balance is a key factor in vessel growth and regression

Author:

Yanagisawa Hayato,Sugimoto MasahiroORCID,Miyashita TomoyukiORCID

Abstract

AbstractExcessive tumour growth results in a hypoxic environment around cancer cells, thus inducing tumour angiogenesis, which refers to the generation of new blood vessels from pre-existing vessels. This mechanism is biologically and physically complex, with various mathematical simulation models proposing to reproduce its formation. However, although temporary vessel regression is clinically known, few models succeed in reproducing this phenomenon. Here, we developed a three-dimensional simulation model encompassing both angiogenesis and tumour growth, specifically including angiopoietin. Angiopoietin regulates both adhesion and migration between vascular endothelial cells and wall cells, thus inhibiting the cell-to-cell adhesion required for angiogenesis initiation. Simulation results showed a regression, i.e. transient decrease, in the overall length of new vessels during vascular network formation. Using our model, we also evaluated the efficacy of administering the drug bevacizumab. The results highlighted differences in treatment efficacy: (1) earlier administration showed higher efficacy in inhibiting tumour growth, and (2) efficacy depended on the treatment interval even with the administration of the same dose. After thorough validation in the future, these results will contribute to the design of angiogenesis treatment protocols.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3