Rare species disproportionally contribute to functional diversity in managed forests

Author:

Basile MarcoORCID

Abstract

AbstractFunctional diversity is linked with critical ecosystem functions, yet its relationship with numerical diversity, e.g. species richness, is not fully understood. The mechanisms linking changes of species richness, e.g. random and non-random species losses and gains, with changes of functional diversity become more relevant in the face of rapid environmental changes. In particular, non-random species changes including rare species may affect functional diversity, and the overall ecosystem function, disproportionately compared to random species changes including common species. In this study, I investigated how changes in numerical diversity of bird assemblages are related to functional diversity, and how the environment, and in particular forest management, influences such a relationship. I collected bird count data in the extensively-managed forest landscape of the Black Forest (Germany), at 82 sampling sites over three years. Data included species richness and abundance per site, and functional traits related to diet and habitat type for each species to compute functional diversity. By partitioning numerical diversity changes into five components using Price Equations, I calculated the contribution of random and non-random species losses and gains, and the abundance of common species, to functional diversity. Then I modelled these contributions as a function of several environmental variables describing broad forest conditions, and including forest management intensity. I found that, beside the major contribution of random species losses to functional diversity, non-random species losses also play a role, indicating that rare species that contribute more to functional diversity are often lost earlier than common species. The overall contribution to functional diversity of species losses is larger than that of species gains, pointing toward an ongoing simplification of the forest bird assemblage. Among all Price components, random species gains were influenced by management intensity, while other components were not influenced by any management variable. This highlight that potential conservation actions may not be effective in halting ecosystem functioning decline, as species gains do not result in increased functional diversity.

Funder

Deutsche Forschungsgemeinschaft

Albert-Ludwigs-Universität Freiburg im Breisgau

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3