High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide

Author:

Qasymeh Montasir,Eleuch Hichem

Abstract

AbstractQuantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks. A large number of incoherent photons are thermally generated within the microwave frequency spectrum. The closeness of the transmitted quantum state to the source-generated quantum state at the input of the transmission link (measured by the transmission fidelity) degrades due to the presence of the incoherent photons. Hence, high-fidelity quantum microwave transmission has long been considered to be infeasible without refrigeration. In this study, we propose a novel method for high-fidelity quantum microwave transmission using a room-temperature lossy waveguide. The proposed scheme consists of connecting two cryogenic nodes (i.e., a transmitter and a receiver) by the room-temperature lossy microwave waveguide. First, cryogenic preamplification is implemented prior to transmission. Second, at the receiver side, a cryogenic loop antenna is placed inside the output port of the waveguide and coupled to an LC harmonic oscillator located outside the waveguide. The loop antenna converts quantum microwave fields to a quantum voltage across the coupled LC harmonic oscillator. Noise photons are induced across the LC oscillator including the source generated noise, the preamplification noise, the thermal occupation of the waveguide, and the fluctuation-dissipation noise. The loop antenna detector at the receiver is designed to extensively suppress the induced photons across the LC oscillator. The signal transmittance is maintained intact by providing significant preamplification gain. Our calculations show that high-fidelity quantum transmission (i.e., more than $$95\%$$ 95 % ) is realized based on the proposed scheme for transmission distances reaching 100 m.

Funder

ASPIRE/Advanced Technology Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3