Effects of a rainwater harvesting system on the soil water, heat and growth of apricot in rain-fed orchards on the Loess Plateau

Author:

Feng Na,Huang Yan,Tian Jiao,Wang Yongliang,Ma Yi,Zhang Weijiang

Abstract

AbstractRainwater is the main water source in arid and semiarid areas of the Loess Plateau, where rainfall is generally insufficient, ineffective and underutilized during the growing season. Thus, improving rainwater utilization efficiency is essential for sustainable agricultural development. A new system composed of rainwater harvesting, an infiltrator bucket with multiple holes and mulching (RHM), was designed to maintain soil moisture at a proper level in rain-fed orchards in arid and semiarid areas of the Loess Region of China. However, there is a lack of clarity on the effectiveness of RHM. In this study, changes in the soil environment and the growth and physiology of apricot trees were monitored via two treatments: (1) Rain-harvesting irrigation system (RHM) treatment and (2) traditional orchard treatment (CK) as a baseline. The results showed that (1) RHM could effectively improve soil water storage at depths of 0–45 cm and at a horizontal distance of 40 cm from the trunk. For the 1.4 mm light rain event, the soil water content increased by 6.3–12%, and for the two moderate rains, the soil water content increased by 12–25%. The change in the soil relative water content predicted by the LSTM model is consistent with the overall trend of the measured value and gradually decreases, and the prediction accuracy is high, with an error of 0.65. (2) The average soil temperatures at 5 cm, 20 cm and 40 cm under RHM were 17.0% (2.4 °C), 13.6% (1.9 °C) and 7.5% (1 °C) greater than those under CK, respectively. (3) Compared with the control treatment, RHM improved the growth and WUEL of apricot trees. The results highlighted the efficiency of the RHM system in enhancing the soil environment and regulating the growth and physiology of apricot trees, which has greater popularization value in arid and semiarid areas.

Funder

Key Research and Development Program of Ningxia Hui Autonomous Region

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Hui Autonomous Region

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3