Motor inhibition errors and interference suppression errors differ systematically on neural and behavioural features of response monitoring

Author:

Porth ElisaORCID,Mattes AndréORCID,Stahl JuttaORCID

Abstract

AbstractAction inhibition and error commission are prominent in everyday life. Inhibition comprises at least two facets: motor inhibition and interference suppression. When motor inhibition fails, a strong response impulse cannot be inhibited. When interference suppression fails, we become distracted by irrelevant stimuli. We investigated the neural and behavioural similarities and differences between motor inhibition errors and interference suppression errors systematically from stimulus-onset to post-response adaptation. To enable a direct comparison between both error types, we developed a complex speeded choice task where we assessed the error types in two perceptually similar conditions. Comparing the error types along the processing stream showed that the P2, an early component in the event-related potential associated with sensory gating, is the first marker for differences between the two error types. Further error-specific variations were found for the parietal P3 (associated with context updating and attentional resource allocation), for the lateralized readiness potential (LRP, associated with primary motor cortex activity), and for the Pe (associated with error evidence accumulation). For motor inhibition errors, the P2, P3 and Pe tended to be enhanced compared to successful inhibition. The LRP for motor inhibition errors was marked by multiple small response impulses. For interference suppression errors, all components were more similar to those of successful inhibition. Together, these findings suggest that motor inhibition errors arise from a deficient early inhibitory process at the perceptual and motor level, and become more apparent than interference suppression errors, that arise from an impeded response selection process.

Funder

Deutsche Forschungsgemeinschaft

Stiftung Begabtenförderung Cusanuswerk

Universität zu Köln

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3