A computationally efficient algorithm for wearable sleep staging in clinical populations

Author:

Fonseca Pedro,Ross Marco,Cerny Andreas,Anderer Peter,van Meulen Fokke,Janssen Hennie,Pijpers Angelique,Dujardin Sylvie,van Hirtum Pauline,van Gilst Merel,Overeem Sebastiaan

Abstract

AbstractThis study describes a computationally efficient algorithm for 4-class sleep staging based on cardiac activity and body movements. Using an accelerometer to calculate gross body movements and a reflective photoplethysmographic (PPG) sensor to determine interbeat intervals and a corresponding instantaneous heart rate signal, a neural network was trained to classify between wake, combined N1 and N2, N3 and REM sleep in epochs of 30 s. The classifier was validated on a hold-out set by comparing the output against manually scored sleep stages based on polysomnography (PSG). In addition, the execution time was compared with that of a previously developed heart rate variability (HRV) feature-based sleep staging algorithm. With a median epoch-per-epoch κ of 0.638 and accuracy of 77.8% the algorithm achieved an equivalent performance when compared to the previously developed HRV-based approach, but with a 50-times faster execution time. This shows how a neural network, without leveraging any a priori knowledge of the domain, can automatically “discover” a suitable mapping between cardiac activity and body movements, and sleep stages, even in patients with different sleep pathologies. In addition to the high performance, the reduced complexity of the algorithm makes practical implementation feasible, opening up new avenues in sleep diagnostics.

Funder

Eindhoven MedTech Innovation Center

Stichting voor de Technische Wetenschappen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3