Microbial community functioning during plant litter decomposition

Author:

Schroeter Simon A.,Eveillard Damien,Chaffron Samuel,Zoppi Johanna,Kampe Bernd,Lohmann Patrick,Jehmlich Nico,von Bergen Martin,Sanchez-Arcos Carlos,Pohnert Georg,Taubert Martin,Küsel Kirsten,Gleixner Gerd

Abstract

AbstractMicrobial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is well known that decomposer communities adapt to the available litter source, but it remains unclear if they functionally compete or synergistically address different litter types. Therefore, we decomposed beech, oak, pine and grass litter from two geologically distinct sites in a lab-scale decomposition experiment. We performed a correlative network analysis on the results of direct infusion HR-MS DOM analysis and cross-validated functional predictions from 16S rRNA gene amplicon sequencing and with DOM and metaproteomic analyses. Here we show that many functions are redundantly distributed within decomposer communities and that their relative expression is rapidly optimized to address litter-specific properties. However, community changes are likely forced by antagonistic mechanisms as we identified several natural antibiotics in DOM. As a consequence, the decomposer community is specializing towards the litter source and the state of decomposition (community divergence) but showing similar litter metabolomes (metabolome convergence). Our multi-omics-based results highlight that DOM not only fuels microbial life, but it additionally holds meta-metabolomic information on the functioning of ecosystems.

Funder

Deutsche Forschungsgemeinschaft

Zwillenberg Tietz Foundation

Max Planck Institute for Biogeochemistry

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3