Indolethylamine N-methyltransferase (INMT) is not essential for endogenous tryptamine-dependent methylation activity in rats

Author:

Glynos Nicolas G.,Carter Lily,Lee Soo Jung,Kim Youngsoo,Kennedy Robert T.,Mashour George A.,Wang Michael M.,Borjigin Jimo

Abstract

AbstractIndolethylamine N-methyltransferase (INMT) is a transmethylation enzyme that utilizes the methyl donor S-adenosyl-L-methionine to transfer methyl groups to amino groups of small molecule acceptor compounds. INMT is best known for its role in the biosynthesis of N,N-Dimethyltryptamine (DMT), a psychedelic compound found in mammalian brain and other tissues. In mammals, biosynthesis of DMT is thought to occur via the double methylation of tryptamine, where INMT first catalyzes the biosynthesis of N-methyltryptamine (NMT) and then DMT. However, it is unknown whether INMT is necessary for the biosynthesis of endogenous DMT. To test this, we generated a novel INMT-knockout rat model and studied tryptamine methylation using radiometric enzyme assays, thin-layer chromatography, and ultra-high-performance liquid chromatography tandem mass spectrometry. We also studied tryptamine methylation in recombinant rat, rabbit, and human INMT. We report that brain and lung tissues from both wild type and INMT-knockout rats show equal levels of tryptamine-dependent activity, but that the enzymatic products are neither NMT nor DMT. In addition, rat INMT was not sufficient for NMT or DMT biosynthesis. These results suggest an alternative enzymatic pathway for DMT biosynthesis in rats. This work motivates the investigation of novel pathways for endogenous DMT biosynthesis in mammals.

Funder

MCubed, University of Michigan

National Institutes of Health

U.S. Department of Veterans Affairs

PharmaDrug Inc.

Center for Consciousness Science, University of Michigan

Department of Molecular & Integrative Physiology, University of Michigan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3