A mechanical and simplified model for RC elements subjected to combined shear and axial tension

Author:

Deifalla A.,Mukhtar F. M.

Abstract

AbstractVery little is known about the shear behavior of elements, in particular those subjected to axial tension. The shear accompanied by tensile forces could cause premature failure of reinforced concrete, which is sudden with minimal warning. Therefore, understanding the shear behavior of reinforced concrete (RC) elements, including those subjected to axial tension, is an ultimate goal of the worldwide research community. In the current study, a new shear mechanical model for RC elements subjected to axial tension is developed, which makes physical sense and explains the behavior. The model is strain-based, inspired by the critical crack theory model (CSCT). In addition, the proposed model extended CSCT (ECSCT) quantifies the effect of axial tension forces on the shear strength in terms of reduction in the compression zone depth and increase in the longitudinal strain. Moreover, the nonlinear trend observed in the literature was implemented using nonlinear multi-variable regression. The ECSCT is validated and compared with available design methods with respect to an extensive database, including 180 elements tested under shear and tension from 18 different research investigations. The ECSCT provided an accurate and physically sound model yet safe to an acceptable extent. Last but not least, a simplified model for the purpose of design is proposed. The simplified model was chosen based on the mechanical model and calibrated using the extensive experimental database. The simplified model provided an accurate and simple model, yet safe to an acceptable extent.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3