Mesoporous Mn-substituted MnxZn1−xCo2O4 ternary spinel microspheres with enhanced electrochemical performance for supercapacitor applications

Author:

Dolla Tarekegn Heliso,Lawal Isiaka Ayobamidele,Kifle Gizachew Wendimu,Jikamo Samuel Chufamo,Matthews Thabo,Maxakato Nobanathi Wendy,Liu Xinying,Mathe Mkhulu,Billing David Gordon,Ndungu Patrick

Abstract

AbstractExtensive investigations have been carried out on spinel mixed transition metal oxide-based materials for high-performance electrochemical energy storage applications. In this study, mesoporous Mn-substituted MnxZn1−xCo2O4 (ZMC) ternary oxide microspheres (x = 0, 0.3, 0.5, 0.7, and 1) were fabricated as electrode materials for supercapacitors through a facile coprecipitation method. Electron microscopy analysis revealed the formation of microspheres comprising interconnected aggregates of nanoparticles. Furthermore, the substitution of Mn into ZnCo2O4 significantly improved the surface area of the synthesized samples. The electrochemical test results demonstrate that the ZMC3 oxide microspheres with an optimal Mn substitution exhibited enhanced performance, displaying the largest specific capacitance of 589.9 F g−1 at 1 A g−1. Additionally, the ZMC3 electrode maintained a capacitance retention of 92.1% after 1000 cycles and exhibited a significant rate capability at a current density of 10 A g−1. This improved performance can be ascribed to the synergistic effects of multiple metals resulting from Mn substitution, along with an increase in the surface area, which tailors the redox behavior of ZnCo2O4 (ZC) and facilitates charge transfer. These findings indicate that the incorporation of Mn into mixed transition metal oxides holds promise as an effective strategy for designing high-performance electrodes for energy storage applications.

Funder

National Research Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pt-modified NiCo2O4/C as high-performance electrodes for supercapacitors;International Journal of Electrochemical Science;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3