Author:
Řezáč Milan,Gloríková Nela,Wilder Shawn M.,Heneberg Petr
Abstract
AbstractSpiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.
Funder
Ministerstvo Školství, Mládeže a Tělovýchovy
Ministerstvo Zemědělství
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Holmstrum, P. et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 408, 3746–3762 (2010).
2. Wahl, O. & Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59, 106–128 (1983).
3. Schmehl, D. R., Teal, P. E. A., Frazier, J. L. & Grozinger, C. M. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol. 71, 177–190 (2014).
4. Tosi, S., Nieh, J. C., Sgolastra, F., Cabbri, R. & Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 284, 20171711 (2017).
5. Stuligross, C. & Williams, N. M. Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 287, 20201390 (2020).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献