A fully coupled system of generalized thermoelastic theory for semiconductor medium

Author:

Sherief H.,Naim Anwar M.,Abd El-Latief A.ORCID,Fayik M.,Tawfik A. M.

Abstract

AbstractThis study presents a new mathematical framework for analyzing the behavior of semiconductor elastic materials subjected to an external magnetic field. The framework encompasses the interaction between plasma, thermal, and elastic waves. A novel, fully coupled mathematical model that describes the plasma thermoelastic behavior of semiconductor materials is derived. Our new model is applied to obtain the solution to Danilovskaya’s problem, which is formed from an isotropic homogeneous semiconductor material. The Laplace transform is utilized to get the solution in the frequency domain using a direct approach. Numerical methods are employed to calculate the inverse Laplace transform, enabling the determination of the solution in the physical domain. Graphical representations are utilized to depict the numerical outcomes of many physical fields, including temperature, stress, displacement, chemical potential, carrier density, and current carrier distributions. These representations are generated for different values of time and depth of the semiconductor material. Ultimately, we receive a comparison between our model and several earlier fundamental models, which is then graphically represented.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Gupta, K. M. & Gupta, N. Advanced Semiconducting Materials and Devices (Springer International Publishing, Berlin, 2016).

2. Tyagi, M. S. Introduction to Semiconductor Materials and Devices (Wiley, New York, 1991).

3. Singh, M., Sargent Jr, J. F. & Sutter, K. M. Semiconductors and the semiconductor industry. Congressional Research Service (CRS) Reports and Issue Briefs, R47508-R47508 (2023).

4. Lord, H. W. & Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967).

5. Biot, M. A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3