Daytime mid-latitude F2-layer Q-disturbances: A formation mechanism

Author:

Perrone Loredana,Mikhailov Andrey V.,Nusinov Anatoly A.

Abstract

AbstractNegative and positive near noontime prolonged (≥3 hours) F2-layer Q-disturbances with deviations in NmF2 > 35% occurred at Rome have been analyzed using aeronomic parameters inferred from fp180 (plasma frequency at 180 km height) and foF2 observations. Both types of NmF2 perturbations occur under quiet (daily Ap < 15 nT) geomagnetic conditions. Day-to-day atomic oxygen [O] variations at F2-region heights specify the type (positive or negative) of Q-disturbance. The [O] concentration is larger on positive and is less on negative Q-disturbance days compared to reference days. This difference takes place not only on average but for all individual Q-disturbances in question. An additional contribution to Q-disturbances formation is provided by solar EUV day-to-day variations. Negative Q-disturbance days are characterized by lower hmF2 while positive – by larger hmF2 compared to reference days. This is due to larger average Tex and vertical plasma drift W on positive Q-disturbance days, the inverse situation takes place for negative Q-disturbance days. Day-to-day changes in global thermospheric circulation may be considered as a plausible mechanism. The analyzed type of F2-layer Q-disturbances can be explained in the framework of contemporary understanding of the thermosphere-ionosphere interaction based on solar and geomagnetic activity as the main drivers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3