Spin liquid mediated RKKY interaction

Author:

Legg Henry F.ORCID,Braunecker Bernd

Abstract

AbstractWe propose an RKKY-type interaction that is mediated by a spin liquid. If a spin liquid exists such an interaction could leave a fingerprint by ordering underlying localised moments such as nuclear spins. This interaction has a unique phenomenology that is distinct from the RKKY interaction found in fermionic systems; most notably the lack of a Fermi surface and absence of the requirement for itinerant electrons, since most spin liquids are insulators. We demonstrate that the interaction is predominately shaped by the lattice symmetries of the underlying spin liquid. As a working example we investigate the possible ordering of nuclear spins that interact through an underlying lattice of the two-dimensional spin-1/2 kagome antiferromagnet (KHAF), although the treatment remains general and can be extended to other spin liquids and dimensions. We find that several different nuclear spin orderings minimise the RKKY-type energy induced by the KHAF but are unstable due to a zero-energy flat magnon band in linear spin-wave theory. Despite this we show that a small magnetic field is able to gap out this magnon spectrum resulting in an intricate nuclear magnetism.

Funder

Deutsche Forschungsgemeinschaft

Bonn-Cologne Graduate School of Physics and Astronomy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3