TAK-861, a potent, orally available orexin receptor 2-selective agonist, produces wakefulness in monkeys and improves narcolepsy-like phenotypes in mouse models

Author:

Mitsukawa Kayo,Terada Michiko,Yamada Ryuji,Monjo Taku,Hiyoshi Tetsuaki,Nakakariya Masanori,Kajita Yuichi,Ando Tatsuya,Koike Tatsuki,Kimura Haruhide

Abstract

AbstractNarcolepsy type 1 (NT1) is associated with severe loss of orexin neurons and characterized by symptoms including excessive daytime sleepiness and cataplexy. Current medications indicated for NT1 often show limited efficacy, not addressing the full spectrum of symptoms, demonstrating a need for novel drugs. We discovered a parenteral orexin receptor 2 (OX2R) agonist, danavorexton, and an orally available OX2R agonist, TAK-994; both improving NT1 phenotypes in mouse models and individuals with NT1. However, danavorexton has limited oral availability and TAK-994 has a risk of off-target liver toxicity. To avoid off-target-based adverse events, a highly potent molecule with low effective dose is preferred. Here, we show that a novel OX2R-selective agonist, TAK-861 [N-{(2S,3R)-4,4-Difluoro-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3′,5′-trifluoro[1,1′-biphenyl]-3-yl)methyl]pyrrolidin-3-yl}ethanesulfonamide], activates OX2R with a half-maximal effective concentration of 2.5 nM and promotes wakefulness at 1 mg/kg in mice and monkeys, suggesting ~ tenfold higher potency and lower effective dosage than TAK-994. Similar to TAK-994, TAK-861 substantially ameliorates wakefulness fragmentation and cataplexy-like episodes in orexin/ataxin-3 and orexin-tTA;TetO DTA mice (NT1 mouse models). Compared with modafinil, TAK-861 induces highly correlated brain-wide neuronal activation in orexin-tTA;TetO DTA mice, suggesting efficient wake-promoting effects. Thus, TAK-861 has potential as an effective treatment for individuals with hypersomnia disorders including narcolepsy, potentially with a favorable safety profile.

Funder

Takeda Pharmaceutical Company

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3