Non-destructive collection and metabarcoding of arthropod environmental DNA remained on a terrestrial plant

Author:

Yoneya Kinuyo,Ushio Masayuki,Miki Takeshi

Abstract

AbstractReliable survey of arthropods is a crucial for their conservation, community ecology, and pest control on terrestrial plants. However, efficient and comprehensive surveys are hindered by challenges in collecting arthropods and identifying especially small species. To address this issue, we developed a non-destructive environmental DNA (eDNA) collection method termed “plant flow collection” to apply eDNA metabarcoding to terrestrial arthropods. This involves spraying distilled or tap water, or using rainfall, which eventually flows over the surface of the plant, and is collected in a container that is set at the plant base. DNA is extracted from collected water and a DNA barcode region of cytochrome c oxidase subunit I (COI) gene is amplified and sequenced using a high-throughput Illumina Miseq platform. We identified more than 64 taxonomic groups of arthropods at the family level, of which 7 were visually observed or artificially introduced species, whereas the other 57 groups of arthropods, including 22 species, were not observed in the visual survey. These results show that the developed method is possible to detect the arthropod eDNA remained on plants although our sample size was small and the sequence size was unevenly distributed among the three water types tested.

Funder

JSPS KAKENHI, a Grant-in-Aid for Young Scientists

Hakubi Project at Kyoto University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3