Author:
Arif Muhammad,Kumam Poom,Kumam Wiyada,Akgul Ali,Sutthibutpong Thana
Abstract
AbstractFractal-fractional derivative is a new class of fractional derivative with power Law kernel which has many applications in real world problems. This operator is used for the first time in such kind of fluid flow. The big advantage of this operator is that one can formulate models describing much better the systems with memory effects. Furthermore, in real world there are many problems where it is necessary to know that how much information the system carries. To explain the memory in a system fractal-fractional derivatives with power law kernel is analyzed in the present work. Keeping these motivation in mind in the present paper new concept of fractal-fractional derivative for the modeling of couple stress fluid (CSF) with the combined effect of heat and mass transfer have been used. The magnetohydrodynamics (MHD) flow of CSF is taken in channel with porous media in the presence of external pressure. The constant motion of the left plate generates the CSF motion while the right plate is kept stationary. The non-dimensional fractal-fractional model of couple stress fluid in Riemann–Liouville sense with power law is solved numerically by using the implicit finite difference method. The obtained solutions for the present problem have been shown through graphs. The effects of various parameters are shown through graphs on velocity, temperature and concentration fields. The velocity, temperature and concentration profiles of the MHD CSF in channel with porous media decreases for the greater values of both fractional parameter $$\alpha$$
α
and fractal parameter $$\beta$$
β
respectively. From the graphical results it can be noticed that the fractal-fractional solutions are more general as compared to classical and fractional solutions of CSF motion in channel. Furthermore, the fractal-fractional model of CSF explains good memory effect on the dynamics of couple stress fluid in channel as compared to fractional model of CSF. Finally, the skin friction, Nusselt number and Sherwood number are evaluated and presented in tabular form.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Tenreiro Machado, J. A. et al. Some applications of fractional calculus in engineering. Math. Probl. Eng https://doi.org/10.1155/2010/639801 (2010).
2. Dalir, M. & Bashour, M. Applications of fractional calculus. Appl. Math. Sci 4(21), 1021–1032 (2010).
3. Tavazoei, M. S., Haeri, M., Jafari, S., Bolouki, S. & Siami, M. Some applications of fractional calculus in suppression of chaotic oscillations. IIEEE Trans. Ind. Electron 55(11), 4094–4101. https://doi.org/10.1109/TIE.2008.925774 (2008).
4. Sabatier, J. A. T. M. J., Agrawal, O. P., & Machado, J. T. Fract. Calc. Appl. Anal, (Vol. 4, No. 9). Dordrecht: Springer, (2007).
5. Koca, I. & Atangana, A. Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. J. Therm. Sci 21(6), 2299–2305. https://doi.org/10.2298/TSCI160209103K (2017).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献