Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium

Author:

Arif Muhammad,Kumam Poom,Kumam Wiyada,Akgul Ali,Sutthibutpong Thana

Abstract

AbstractFractal-fractional derivative is a new class of fractional derivative with power Law kernel which has many applications in real world problems. This operator is used for the first time in such kind of fluid flow. The big advantage of this operator is that one can formulate models describing much better the systems with memory effects. Furthermore, in real world there are many problems where it is necessary to know that how much information the system carries. To explain the memory in a system fractal-fractional derivatives with power law kernel is analyzed in the present work. Keeping these motivation in mind in the present paper new concept of fractal-fractional derivative for the modeling of couple stress fluid (CSF) with the combined effect of heat and mass transfer have been used. The magnetohydrodynamics (MHD) flow of CSF is taken in channel with porous media in the presence of external pressure. The constant motion of the left plate generates the CSF motion while the right plate is kept stationary. The non-dimensional fractal-fractional model of couple stress fluid in Riemann–Liouville sense with power law is solved numerically by using the implicit finite difference method. The obtained solutions for the present problem have been shown through graphs. The effects of various parameters are shown through graphs on velocity, temperature and concentration fields. The velocity, temperature and concentration profiles of the MHD CSF in channel with porous media decreases for the greater values of both fractional parameter $$\alpha$$ α and fractal parameter $$\beta$$ β respectively. From the graphical results it can be noticed that the fractal-fractional solutions are more general as compared to classical and fractional solutions of CSF motion in channel. Furthermore, the fractal-fractional model of CSF explains good memory effect on the dynamics of couple stress fluid in channel as compared to fractional model of CSF. Finally, the skin friction, Nusselt number and Sherwood number are evaluated and presented in tabular form.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3