Highly efficient lead removal from water by Nd0.90Ho0.10FeO3 nanoparticles and studying their optical and magnetic properties

Author:

Arman M. M.

Abstract

AbstractHo-doped NdFeO3 was synthesized using the citrate method. The X-ray diffraction (XRD) illustrated that Nd0.90Ho0.10FeO3 was crystalline at the nanoscale, with a crystallite size of 39.136 nm. The field emission scanning electron microscope (FESEM) illustrated the porous nature of Nd0.90Ho0.10FeO3, which increases the active sites to absorb the heavy metals on the sample surface. Energy-dispersive X-ray (EDX) data assures the prepared sample has the chemical formula Nd0.90Ho0.10FeO3. The magnetic properties of Nd0.90Ho0.10FeO3 were determined using the magnetization hysteresis loop and Faraday’s method. Many magnetic parameters of the sample have been discussed, such as the coercive field, the exchange bias (Hex), and the switching field distribution (SFD). Ho-doped NdFeO3 has an antiferromagnetic (AFM) character with an effective magnetic moment of 3.903 B.M. The UV–visible light absorbance of Nd0.90Ho0.10FeO3 is due to the transfer of electrons from the oxygen 2p state to the iron 3d state. Nd0.90Ho0.10FeO3 nanoparticles have an optical direct transition with an energy gap Eg = 1.106 eV. Ho-doped NdFeO3 can adsorb many heavy metals (Co2+, Ni2+, Pb2+, Cr6+, and Cd2+) from water. The removal efficiency is high for Pb2+ ions, which equals 72.39%. The Langmuir isotherm mode is the best-fit model for adsorbing the Pb2+ ions from water.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3