Composition, characteristics, and treatment technologies of condensable particulate matter present in flue gas emitted by coking plants in China

Author:

Wang Chunyan,Du Yuhong,Yan Bo,Dong Yonggang,Zhao Zhihui,Shen Jinchao,Guo Mengxia,Zhang Zhaochi

Abstract

AbstractTo study the total particulate matter (TPM) in flue gas emitted by coking plants, a sampling system that could be used to collect filterable particulate matter (FPM) and condensable particulate matter (CPM) was designed and developed based on Method 202 recommended by the U.S. Environmental Protection Agency in 2017 and HJ 836-2017 issued by China. Using this system, FPM and CPM in flue gas emitted by four coking furnaces named A, B, C, and D were tested in China. Further, 9 water-soluble ions, 20 elements, and organic matter present in the CPM were simultaneously examined to determine their formation mechanisms. Statistical data suggested that the FPM emission level in the coking flue gas was low and the average mass concentration was less than 10 mg/m3. However, with high CPM and TPM emission levels, the TPM mass concentrations of A, B, C, and D were 130 ± 11.1, 84.4 ± 6.36, 35.1 ± 17.0, and 63.8 ± 13.0 mg/m3, respectively. The main component of TPM was CPM, and the average mass concentration of CPM accounted for 98%, 95%, 68%, and 95% of TPM in furnaces A, B, C, and D, respectively. Water-soluble ions were the important components of CPM, and the total concentration of water-soluble ions accounted for 70%, 87%, 42%, and 66% of CPM in furnaces A, B, C, and D, respectively. Toxic and harmful heavy metals, such as Mn, Cr, Ni, Cu, Zn, As, Cd, and Pb, were detected in CPM. The formation mechanism of CPM was analyzed in combination with flue-gas treatment. It was shown that the treatment process “activated carbon– flue-gas countercurrent-integrated purification technology + ammonia spraying” used in furnaces A and B was less effective in removing CPM, water-soluble ions, metals, and compounds than that of “selective catalytic reduction denitrification + limestone–gypsum wet desulfurization (spraying NaOH solution)” in furnaces C and D. Hence, different flue-gas treatment technologies and operation levels played vital roles in the formation, transformation, and removal of CPM from flue-gas. Organic components in CPM discharged from furnace A were determined via gas chromatography–mass spectrometry, and the top 15 organic components in CPM were obtained using the area normalization method. N-alkanes accounted for the highest proportion, followed by esters and phenols, and most of them were toxic and harmful to humans and ecosystems. Therefore, advanced CPM treatment technologies should be developed to reduce atmospheric PM2.5 and its precursors to improve ambient air quality in China.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3