$$\mathscr {S}\mathscr {E}\mathscr {I}\mathscr {A}\mathscr {R}\mathscr {S}$$ model for analyzing $$\mathscr {C}\mathscr {O}\mathscr {V}\mathscr {I}\mathscr {D}$$-19 pandemic process via $$\uppsi $$-Caputo fractional derivative and numerical simulation

Author:

Mohammadaliee Behnam,Roomi Vahid,Samei Mohammad Esmael

Abstract

AbstractThe objective of this study is to develop the $$\mathscr {S}\mathscr {E}\mathscr {I}\mathscr {A}\mathscr {R}\mathscr {S}$$ S E I A R S epidemic model for $$\mathscr {C}\mathscr {O}\mathscr {V}\mathscr {I}\mathscr {D}$$ C O V I D -$${\textbf {19}}$$ 19 utilizing the $$\uppsi $$ ψ -Caputo fractional derivative. The reproduction number ($$\breve{\mathscr {R}}_0$$ R ˘ 0 ) is calculated utilizing the next generation matrix method. The equilibrium points of the model are computed, and both the local and global stability of the disease-free equilibrium point are demonstrated. Sensitivity analysis is discussed to describe the importance of the parameters and to demonstrate the existence of a unique solution for the model by applying a fixed point theorem. Utilizing the fractional Euler procedure, an approximate solution to the model is obtained. To study the transmission dynamics of infection, numerical simulations are conducted by using MatLab. Both numerical methods and simulations can provide valuable insights into the behavior of the system and help in understanding the existence and properties of solutions. By placing the values $$\texttt{t}$$ t , $$\ln (\texttt{t})$$ ln ( t ) and $$\sqrt{\texttt{t}}$$ t instead of $$\uppsi $$ ψ , the derivatives of the Caputo and Caputo–Hadamard and Katugampola appear, respectively, to compare the results of each with real data. Besides, these simulations specifically with different fractional orders to examine the transmission dynamics. At the end, we come to the conclusion that the simulation utilizing Caputo derivative with the order of 0.95 shows the prevalence of the disease better. Our results are new which provide a good contribution to the current research on this field of research.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3