A novel subject-wise dictionary learning approach using multi-subject fMRI spatial and temporal components

Author:

Khalid Muhammad Usman,Nauman Malik Muhammad

Abstract

AbstractThe conventional dictionary learning (DL) algorithms aim to adapt the dictionary/sparse code to individual functional magnetic resonance imaging (fMRI) data. Thus, lacking the capability to consolidate the spatiotemporal diversities offered by other subjects. Considering that subject-wise (sw) data matrix can be decomposed into the sparse linear combination of multi-subject (MS) time courses and MS spatial maps, two new algorithms, sw sequential DL (swsDL) and sw block DL (swbDL), have been proposed. They are based on the novel framework, defined by the mixing model, where base matrices prepared by operating a computationally fast sparse spatiotemporal blind source separation method over multiple subjects are employed to adapt the mixing matrices to sw training data. They solve the optimization models formulated using $$l_0$$ l 0 /$$l_1$$ l 1 -norm penalization/constraints through dictionary/sparse code pair update and alternating minimization approach. They are unique because no existing sparse DL method can incorporate MS spatiotemporal components while updating sw atoms/sparse codes, which can eventually be assembled using neuroscience knowledge to extract group-level dynamics. Various fMRI datasets are used to evaluate and compare the performance of the proposed algorithms with existing state-of-the-art algorithms. Specifically, overall, a $$14\%$$ 14 % increase in the mean correlation value and $$39\%$$ 39 % reduction in the mean computation time exhibited by swsDL and swbDL, respectively, over the adaptive consistent sequential dictionary algorithm.

Funder

Universiti Brunei Darussalam

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3