Hybrid feature engineering of medical data via variational autoencoders with triplet loss: a COVID-19 prognosis study

Author:

Mahdavi Mahdi,Choubdar Hadi,Rostami Zahra,Niroomand Behnaz,Levine Alexandra T.,Fatemi Alireza,Bolhasani Ehsan,Vahabie Abdol-Hossein,Lomber Stephen G.,Merrikhi Yaser

Abstract

AbstractMedical machine learning frameworks have received much attention in recent years. The recent COVID-19 pandemic was also accompanied by a surge in proposed machine learning algorithms for tasks such as diagnosis and mortality prognosis. Machine learning frameworks can be helpful medical assistants by extracting data patterns that are otherwise hard to detect by humans. Efficient feature engineering and dimensionality reduction are major challenges in most medical machine learning frameworks. Autoencoders are novel unsupervised tools that can perform data-driven dimensionality reduction with minimum prior assumptions. This study, in a novel approach, investigated the predictive power of latent representations obtained from a hybrid autoencoder (HAE) framework combining variational autoencoder (VAE) characteristics with mean squared error (MSE) and triplet loss for forecasting COVID-19 patients with high mortality risk in a retrospective framework. Electronic laboratory and clinical data of 1474 patients were used in the study. Logistic regression with elastic net regularization (EN) and random forest (RF) models were used as final classifiers. Moreover, we also investigated the contribution of utilized features towards latent representations via mutual information analysis. HAE Latent representations model achieved decent performance with an area under ROC curve of 0.921 (±0.027) and 0.910 (±0.036) with EN and RF predictors, respectively, over the hold-out data in comparison with the raw (AUC EN: 0.913 (±0.022); RF: 0.903 (±0.020)) models. The study aims to provide an interpretable feature engineering framework for the medical environment with the potential to integrate imaging data for efficient feature engineering in rapid triage and other clinical predictive models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3