Application of physics encoded neural networks to improve predictability of properties of complex multi-scale systems

Author:

Meinders Marcel B. J.,Yang Jack,Linden Erik van der

Abstract

AbstractPredicting physical properties of complex multi-scale systems is a common challenge and demands analysis of various temporal and spatial scales. However, physics alone is often not sufficient due to lack of knowledge on certain details of the system. With sufficient data, however, machine learning techniques may aid. If data are yet relatively cumbersome to obtain, hybrid methods may come to the rescue. We focus in this report on using various types of neural networks (NN) including NN’s into which physics information is encoded (PeNN’s) and also studied effects of NN’s hyperparameters. We apply the networks to predict the viscosity of an emulsion as a function of shear rate. We show that using various network performance metrics as the mean squared error and the coefficient of determination ($$R^2$$ R 2 ) that the PeNN’s always perform better than the NN’s, as also confirmed by a Friedman test with a p-value smaller than 0.0002. The PeNN’s capture extrapolation and interpolation very well, contrary to the NN’s. In addition, we have found that the NN’s hyperparameters including network complexity and optimization methods do not have any effect on the above conclusions. We suggest that encoding NN’s with any disciplinary system based information yields promise to better predict properties of complex systems than NN’s alone, which will be in particular advantageous for small numbers of data. Such encoding would also be scalable, allowing different properties to be combined, without repetitive training of the NN’s.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3