Physical and 3D numerical modelling of reinforcements pullout test

Author:

Damians Ivan P.,Moncada Aníbal,Olivella Sebastià,Lloret Antonio,Josa Alejandro

Abstract

AbstractThis paper reports results of laboratory and 3D numerical modeled pull-out tests with steel ladders and polymeric strip reinforcements. These types of reinforcement are commonly used in reinforced soil walls constructed with concrete facing elements. Laboratory pull-out tests are required to determine accurate and realistic pull-out strength values considering the interaction of specific reinforcement and backfill materials under different confining pressures (i.e., trying to simulate the different reinforcement layer arrangements and load conditions in actual reinforced soil walls). International design Codes for reinforced soil walls provide default values for pull-out strength. However, in many cases, default values are too conservative and/or are not strictly specified for particular reinforcement types. Pull-out tests can be difficult and expensive to perform, thus not being common nor worth for the vast majority of reinforced soil wall projects. Consequently, calibrated numerical models can be useful to predict pull-out response under site-specific conditions, and provide further understanding of the mechanisms involved in the soil-reinforcement interaction. Details of the numerical approach, including relevant aspects of the soil-reinforcement interfaces, are described. Examples of calibrated numerical predictions for pull-out loads, displacements, and soil-dilatancy effects are presented. The influence of reinforcement, soil and interface stiffnesses is shown. Numerical results provide useful insight for future modelling works of the complex interaction between type-specific backfill materials and reinforcement element, relevant for investigation and/or practical design of reinforced soil walls.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3