Detecting spiral wave tips using deep learning

Author:

Lilienkamp Henning,Lilienkamp Thomas

Abstract

AbstractThe chaotic spatio-temporal electrical activity during life-threatening cardiac arrhythmias like ventricular fibrillation is governed by the dynamics of vortex-like spiral or scroll waves. The organizing centers of these waves are called wave tips (2D) or filaments (3D) and they play a key role in understanding and controlling the complex and chaotic electrical dynamics. Therefore, in many experimental and numerical setups it is required to detect the tips of the observed spiral waves. Most of the currently used methods significantly suffer from the influence of noise and are often adjusted to a specific situation (e.g. a specific numerical cardiac cell model). In this study, we use a specific type of deep neural networks (UNet), for detecting spiral wave tips and show that this approach is robust against the influence of intermediate noise levels. Furthermore, we demonstrate that if the UNet is trained with a pool of numerical cell models, spiral wave tips in unknown cell models can also be detected reliably, suggesting that the UNet can in some sense learn the concept of spiral wave tips in a general way, and thus could also be used in experimental situations in the future (ex-vivo, cell-culture or optogenetic experiments).

Funder

Deutsches Zentrum für Herz-Kreislaufforschung

Helmholtz Einstein International Berlin Research School in Data Science

Max Planck Institute for Dynamics and Self-Organization (MPIDS)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying spiral wave tips with reservoir computing;Chaos, Solitons & Fractals;2024-03

2. Image-Decomposition-Enhanced Deep Learning for Detection of Rotor Cores in Cardiac Fibrillation;IEEE Transactions on Biomedical Engineering;2024-01

3. Rotating Wave Dynamics in Rings of Coupled Oscillators: Insights into Working Memory Models;2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA);2023-09-18

4. Recurrence quantification analysis for fine-scale characterisation of arrhythmic patterns in cardiac tissue;Scientific Reports;2023-07-22

5. Dynamics of coexisting rotating waves in unidirectional rings of bistable Duffing oscillators;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3