Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study

Author:

Yassine Abdul-Amir,Lo William C. Y.,Saeidi Tina,Ferguson Dallis,Whyne Cari M.,Akens Margarete K.,Betz Vaughn,Lilge Lothar

Abstract

AbstractSpinal metastases often occur in the advanced stages of breast, lung or prostate cancer, resulting in a significant impact on the patient’s quality of life. Current treatment modalities for spinal metastases include both systemic and localized treatments that aim to decrease pain, improve mobility and structural stability, and control tumour growth. With the development of non-toxic photosensitizer drugs, photodynamic therapy (PDT) has shown promise as a minimally invasive non-thermal alternative in oncology, including for spinal metastases. To apply PDT to spinal metastases, predictive algorithms that optimize tumour treatment and minimize the risk of spinal cord damage are needed to assess the feasibility of the treatment and encourage a broad acceptance of PDT in clinical trials. This work presents a framework for PDT modelling and planning, and simulates the feasibility of using a BPD-MA mediated PDT to treat bone metastases at two different wavelengths (690 nm and 565 nm). An open-source software for PDT planning, PDT-SPACE, is used to evaluate different configurations of light diffusers (cut-end and cylindrical) fibres with optimized power allocation in order to minimize the damage to spinal cord or maximize tumour destruction. The work is simulated on three CT images of metastatically involved vertebrae acquired from three patients with spinal metastases secondary to colorectal or lung cancer. Simulation results show that PDT at a 565 nm wavelength has the ability to treat 90% of the metastatic lesion with less than 17% damage to the spinal cord. However, the energy required, and hence treatment time, to achieve this outcome with the 565 nm is infeasible. The energy required and treatment time for the longer wavelength of 690 nm is feasible ($${\sim }\,40$$ 40  min), but treatment aimed at 90% of the metastatic lesion would severely damage the proximal spinal cord. PDT-SPACE provides a simulation platform that can be used to optimize PDT delivery in the metastatic spine. While this work serves as a prospective methodology to analyze the feasibility of PDT for tumour ablation in the spine, preclinical studies in an animal model are ongoing to elucidate the spinal cord damage extent as a function of PDT dose, and the resulting short and long term functional impairments. These will be required before there can be any consideration of clinical trials.

Funder

Photonics Innovation Center at University of Toronto

Ontario Research Fund

Theralase Technologies Inc.

International Business Machines Corporation

Intel Corporation

Canadian Institutes of Health Research

Harvard Presidential Scholarship

Howard Cox MD/PhD Fellowship, Harvard Medical School

Princess Margaret Cancer Foundation

Ontario Ministry of Health and Long-Term Care

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3