Storage conditions determine the characteristics of red blood cell derived extracellular vesicles

Author:

Bebesi Tímea,Kitka Diána,Gaál Anikó,Szigyártó Imola Csilla,Deák Róbert,Beke-Somfai Tamás,Koprivanacz Kitti,Juhász Tünde,Bóta Attila,Varga Zoltán,Mihály Judith

Abstract

AbstractExtracellular vesicles (EVs) are released during the storage of red blood cell (RBC) concentrates and might play adverse or beneficial roles throughout the utilization of blood products (transfusion). Knowledge of EV release associated factors and mechanism amends blood product management. In the present work the impact of storage time and medium (blood preserving additive vs isotonic phosphate buffer) on the composition, size, and concentration of EVs was studied using attenuated total reflection infrared (ATR-IR) spectroscopy, microfluidic resistive pulse sensing (MRPS) and freeze-fraction combined transmission electron micrography (FF-TEM). The spectroscopic protein-to-lipid ratio based on amide and the C–H stretching band intensity ratio indicated the formation of various vesicle subpopulations depending on storage conditions. After short storage, nanoparticles with high relative protein content were detected. Spectral analysis also suggested differences in lipid and protein composition, too. The fingerprint region (from 1300 to 1000 cm−1) of the IR spectra furnishes additional information about the biomolecular composition of RBC-derived EVs (REVs) such as adenosine triphosphate (ATP), lactose, glucose, and oxidized hemoglobin. The difference between the vesicle subpopulations reveals the complexity of the REV formation mechanism. IR spectroscopy, as a quick, cost-effective, and label-free technique provides valuable novel biochemical insight and might be used complementary to traditional omics approaches on EVs.

Funder

National Research, Development and Innovation Office NKFIH, Hungary

Ministry for Innovation and Technology

Magyar Tudományos Akadémia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3