Author:
Bakhtyari Ali,Rasoolzadeh Ali,Vaferi Behzad,Khandakar Amith
Abstract
AbstractThe current trend of chemical industries demands green processing, in particular with employing natural substances such as sugar-derived compounds. This matter has encouraged academic and industrial sections to seek new alternatives for extracting these materials. Ionic liquids (ILs) are currently paving the way for efficient extraction processes. To this end, accurate estimation of solubility data is of great importance. This study relies on machine learning methods for modeling the solubility data of sugar alcohols (SAs) in ILs. An initial relevancy analysis approved that the SA-IL equilibrium governs by the temperature, density and molecular weight of ILs, as well as the molecular weight, fusion temperature, and fusion enthalpy of SAs. Also, temperature and fusion temperature have the strongest influence on the SAs solubility in ILs. The performance of artificial neural networks (ANNs), least-squares support vector regression (LSSVR), and adaptive neuro-fuzzy inference systems (ANFIS) to predict SA solubility in ILs were compared utilizing a large databank (647 data points of 19 SAs and 21 ILs). Among the investigated models, ANFIS offered the best accuracy with an average absolute relative deviation (AARD%) of 7.43% and a coefficient of determination (R2) of 0.98359. The best performance of the ANFIS model was obtained with a cluster center radius of 0.435 when trained with 85% of the databank. Further analyses of the ANFIS model based on the leverage method revealed that this model is reliable enough due to its high level of coverage and wide range of applicability. Accordingly, this model can be effectively utilized in modeling the solubilities of SAs in ILs.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献