Calcium wastes as an additive for a low calcium fly ash geopolymer

Author:

Chindaprasirt Prinya,Rattanasak Ubolluk

Abstract

AbstractA geopolymer is a low-carbon cement based on the utilization of waste ash in alkali-activated conditions. Coal fly ash is widely used as a source material for geopolymer synthesis since it contains a sufficient amount of reactive alumina and silica for geopolymerization. Geopolymer products are known to have beneficial fire resistance and mechanical properties. Class F or low-calcium fly ash (LCFA) is generally used as a primary aluminosilicate source; however, heat curing is required to complete the reaction and hardening process and achieve a strong composite. Furthermore, calcium additives are often required to improve the strength of LCFA geopolymers. This paper presents the potential of reusing calcium waste for this purpose. Three calcium wastes, namely calcium carbide residue (CCR), limestone waste, and waste cement (WC) slurry in powder form were used as additives and compared with the use of ordinary Portland cement (OPC). LCFA was replaced with the calcium additives at 20%. However, 20% CCR resulted in flash setting, hence 5% CCR was used instead. A durability test using 3% HCl solution was also performed. The results showed that the reactivity of calcium additives played an important role in strength development. In the calcium–aluminosilicate–alkali system, calcium silicate hydrate (CSH) and calcium aluminosilicate hydrate (CASH) were formed. The maximum strength of 21.9 MPa was obtained from the OPC/LCFA geopolymer, and 3% HCl solution had a deleterious effect on the strength. OPC and CCR were favorable reactive sources of calcium compounds to blend with LCFA. From the thermogravimetric results, lower thermal weight changes with higher strength gains were achieved. Low CaCO3 decomposition at 750 °C according to the TGA curves indicated the more formation of thermally stable CSH and high compressive strength of Ca/LCFA geopolymers.

Funder

Khon Kaen University

Center of Excellence on Environmental Health and Toxicology

Burapha University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3