Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry

Author:

Lebrato MarioORCID,Wang Yiming V.,Tseng Li-ChunORCID,Achterberg Eric P.ORCID,Chen Xue-Gang,Molinero Juan-Carlos,Bremer Karen,Westernströer Ulrike,Söding Emanuel,Dahms Hans-Uwe,Küter Marie,Heinath Verena,Jöhnck Janika,Konstantinou Kostas I.,Yang Yiing J.ORCID,Hwang Jiang-Shiou,Garbe-Schönberg DieterORCID

Abstract

AbstractShallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference50 articles.

1. Tarasov, V. G., Gebruk, A. V., Mironov, A. N. & Moskalev, L. I. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 5–39 (2005).

2. Chen, C.-T. et al. Investigation into extremely acidic hydrothermal fluids off Kueistan Tao, Taiwan. China Acta Oceanologica Sinica 24, 125–133 (2005a).

3. Chen, C.-T. et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology 224, 69–81 (2005b).

4. Kerrick, D. M., McKibben, M. A., Seward, T. M. & Caldeira, K. Convective hydrothermal CO2 emission from high heat-flow regions. Chemical Geology 121, 285–293 (1995).

5. Corliss, J. B., Baross, J. & Hoffman, S. An hypothesis concerning the relationships between submarine hot springs and the origin of life on earth. Oceanologica Acta, Special issue (1981).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3