Soil phosphorous is the primary factor determining species-specific plant growth depending on soil acidity in island ecosystems with severe erosion

Author:

Hata Kenji,Hiradate Syuntaro,Kachi Naoki

Abstract

AbstractDisturbances caused by invasive ungulates alter soil environments markedly and can prevent ecosystem recovery even after eradication of the ungulates. On oceanic islands, overgrazing and trampling by feral goats has caused vegetation degradation and soil erosion, which can alter soil chemistry. To understand the effects of the changes on plant performance, we conducted a laboratory experiment to assess herbaceous species growth under various soil conditions with phosphorous, nutrients, and acidity. Subsoil was collected from Nakodo-jima in the northwest Pacific. Six herbaceous species dominating the island were grown in soils with three levels of added CaCO3 and P2O5 and two levels of added KNO3. After 4 weeks of growth, the total dry plant weight was significantly lower with no added P2O5, regardless of the addition of KNO3. Three species weighed more under P2O5 and KNO3 addition in high-pH soil, whereas the remaining three weighed less. Our results indicated that herbaceous species growth is limited primarily by phosphorous availability; the limitation is dependent on soil pH, and the trend of dependency differs among species. This implies that ecosystems with extreme disturbances cannot recover without improving the soil chemistry.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3