Author:
Miller Nathan Eli,Mukhopadhyay Saibal
Abstract
AbstractIn this work, we present a Quantum Hopfield Associative Memory (QHAM) and demonstrate its capabilities in simulation and hardware using IBM Quantum Experience.. The QHAM is based on a quantum neuron design which can be utilized for many different machine learning applications and can be implemented on real quantum hardware without requiring mid-circuit measurement or reset operations. We analyze the accuracy of the neuron and the full QHAM considering hardware errors via simulation with hardware noise models as well as with implementation on the 15-qubit ibmq_16_melbourne device. The quantum neuron and the QHAM are shown to be resilient to noise and require low qubit overhead and gate complexity. We benchmark the QHAM by testing its effective memory capacity and demonstrate its capabilities in the NISQ-era of quantum hardware. This demonstration of the first functional QHAM to be implemented in NISQ-era quantum hardware is a significant step in machine learning at the leading edge of quantum computing.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献